KNOWLEDGE GRAPHS

MINI HANDBOOK

COMPILED BY FARIZ DARARI, PH.D.

FACULTY OF COMPUTER SCIENCE UNIVERSITAS INDONESIA

v1.1.0

What this mini handbook is about

- This mini handbook is basically a collection of lecture notes of a MOOC course on knowledge graphs (KGs) by Fariz Darari, Ph.D.
- This mini handbook is meant to be a set of triggers for readers to look up for further and deeper exploration on knowledge graph topics
- This mini handbook is made possible by a lot of material already provided by knowledge graph communities, thank you!
- Any feedback or improvement suggestions are very welcome! Ping me at: fariz ----at---- ui -----dot----- id
- Enjoy this knowledge graph mini handbook as much as I enjoy compiling it!

(Fariz Darari, Nov 2021)

Table of Contents (clickable)

- Intro to knowledge graphs
- <u>RDF</u>
- RDF Schema (RDFS) & SKOS
- <u>SPARQL</u>
- Advanced SPARQL
- <u>Wikidata & DBpedia</u>
- <u>OWL</u>
- <u>SHACL</u>
- KG-based data integration
- <u>Knowledge graph infrastructure</u>
- <u>Knowledge graph visualization</u>
- <u>Knowledge graph quality</u>
- <u>Knowledge graph embeddings</u>
- <u>Knowledge graph construction</u>

CSCE604131 | Jejaring Semantik (Knowledge Graphs) Intro to knowledge graphs

Fariz Darari, Ph.D.

Let's suppose that ...

... you would like to build an application to visualize and analyze COVID-19.*

What would you primarily need?

***Fariz Darari.** COVIWD: COVID-19 Wikidata Dashboard. Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), 14(1):39-47, 2021. Available in English at: <u>https://s.id/coviwd-pdf</u>

Let's suppose that ...

... you would like to build an application to visualize and analyze COVID-19.*

What would you primarily need? Data!

***Fariz Darari.** COVIWD: COVID-19 Wikidata Dashboard. Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), 14(1):39-47, 2021. Available in English at: <u>https://s.id/coviwd-pdf</u>

Closed vs. Open Data

Have you ever been in a situation where you would like to build an application about something (that requires data), but you **don't have access** to the data? You are not alone!

 VS.

 Further initiative on data openness (in higher education domain):

 https://s.id/tridharma-terbuka-vid

Human Readable vs. Machine Readable

Have you ever been in a situation where you would like to build an application, and you already have the data, but the data is just hard to process? You are not alone!

Tabular vs. Graph

Have you ever been in a situation where you would like to build an application, and you want not only data that is machine-readable, but also is flexible and human-interpretable? You are not alone!

Separated vs. Integrated/Linked

Have you ever been in a situation where you would like to build an application, but the data you want for the application is **separated across different sources**? You are not alone!

What is "knowledge"?

Compiled by Fariz Darari

2 a : the sum of what is known : the body of truth, information, and principles acquired by humankind

---> Tesaurus

What is "graph"?

What is "graph"?

Compiled by Fariz Darari

15

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 Faculty of Computer Science Universitas Indonesia

A CONTRACT OF A CO

UNIVERSITAS Indonesia

CSCE604131 | Jejaring Semantik (Knowledge Graphs) Resource Description Framework (RDF)

Fariz Darari, Ph.D.

KG standards

the data part and Da

KG standard: RDF

- Data model, based on S-P-O triple structure (Subject, Predicate, Object)
- Used for describing things, yes, every, single, thing
 And anyways, RDF = Resource Description Framework
- Key features:
 - > RDF is intuitive
 - > RDF is flexible
 - > RDF is machine-readable and can be exported into many formats
 - > RDF describes & links things, not just documents
 - > RDF links are typed

KG standard: RDF Knowledge Graph (in text)

Compiled by Fariz Darari

<Bob> <is a> <person>. <Bob> <is a friend of> <Alice>. <Bob> <is born on> <the 4th of July 1990>. <Bob> <is interested in> <the Mona Lisa>. <the Mona Lisa> <was created by> <Leonardo da Vinci>. <the video 'La Joconde à Washington'> <is about> <the Mona Lisa>.

Compiled by Fariz Dhttps://www.w3.org/TR/rdf11-primer/

KG standard: RDF Knowledge Graph

24

Four Key Principles for RDF Graphs

- Uniform Resource Identifiers (URIs) as identifiers y Fariz Darari
- HTTP URI as information access protocol

Four Key Principles for RDF Graphs

So basically RDF is built on top of the (proven) web standards!

- Uniform Resource Identifiers (URIs) as identifiers
 Fariz Darari
- HTTP URI as information access protocol

Four Key Principles for RDF Graphs

So basically RDF is built on top of the (proven) web standards!

- Uniform Resource Identifiers (URIs) as identifiers y Fariz Dara
- HTTP URI as information access protocol
- RDF and SPARQL as knowledge representation and querying languages
- Link information from one source to other

RDF Knowledge Graph Revisited

UNIVERSITAS NOTICE TONGTON DE CONTRACTORIO CONTRACTORIO DE CONTRACTORIO DE CONTRACTORIO CONTRACTORIO DE CONTRACTORIO DE CONTRACTORIO CONTRACTORIO DE CONTRACTORIO DE CONTRACTORIO DE CONTRACTORIO CONTRACTORIO DE CONTRACTORIO DE CONTRACTORIO DE CONTRACTORIO DE CONTRACTORIO DE CONTRACTORIO DE CONTRACTORIO CONTRACTORIO DE CONTRACTORIO

RDF Knowledge Graph Revisited

Compiled by Fariz Darari

Bob can be identified through the URI http://example.org/bob#me and Mona Lisa through the URI http://www.wikidata.org/entity/Q12418.

Property birthDate is identified through http://schema.org/birthDate and title through URI http://purl.org/dc/terms/.

A KG can contain literal values such as "Mona Lisa " and "1990-07-04".

Literals in RDF

- Literals are basic values that are not URIs.
- Examples of literals include strings such as "La Joconde", dates such as "the 14th of July, 1990" and numbers such as "3.14159".
- Literals are associated with a datatype (like the ones defined by XML Schema) enabling such values to be parsed and interpreted correctly. For example:
 - > "La Joconde"^^xsd:string
 - > "1990-07-04"^^xsd:date
 - > "3.14159"^^xsd:double
- String literals can optionally be associated with a language tag. Example:
 - > "Thank You"@en
 - > "Grazie"@it
 - > "Danke"@de

30

Blank Nodes in RDF

- Through blank nodes, RDF can represent anonymous resources
- So to capture something like: There exists a student with pet name "Tom"
- Blank nodes can have local identifiers but not global identifiers
- For that reason, use blank nodes carefully
- Typical uses:
 - > You are not sure of the URI
 - > You do not want to provide a URI
 - > Logical grouping of related properties

Thus, the elements of an RDF triple are...

- Three types of elements can be used in a triple:
 - > URIs: Uniform Resource Identifiers
 - > Literals: Basic/primitive values which are not URIs
 - > Blank nodes: Anonymous/local resources
- Rules on their use in an RDF triple:

		Subject	Predicate	Object
	URI	1	1	1
	Literal	×	×	1
Compiled by Eari	Blank Node	1	×	1
		https://pe	ople.montefiore.uliege	e.be/binot/INFO8005/

RDF Serialization

Compiled by Fariz Darari

- An RDF graph must be serialized to be stored into files.
- Several syntaxes exist:
 - > RDF/XML, first serialization format for RDF
 - > N-Triples, trivial to parse/serialize
 - > Turtle, popular & more human-readable
 - > JSON-LD, JSON-based & more familiar to web devs

RDF Graph in Turtle Format

```
BASE <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX schema: <http://schema.org/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX wd: <http://www.wikidata.org/entity/>
```

<bob#me>

```
a foaf:Person ;
foaf:knows <alice#me> ;
schema:birthDate "1990-07-04"^^xsd:date ;
foaf:topic_interest wd:Q12418 .
# continue next page ...
```


RDF Graph in Turtle Format (cont.)

wd:Q12418

```
dcterms:title "Mona Lisa" ;
```

dcterms:creator

<http://dbpedia.org/resource/Leonardo_da_Vinci> .

<http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813 C5F9AA4D619>

dcterms:subject wd:Q12418 .

Real-world Example: Indonesia on DBpedia KG

- URI to identify the resource Indonesia: http://dbpedia.org/resource/Indonesia
- URI providing human-readable information (HTML) http://dbpedia.org/page/Indonesia

URI providing machine-readable information (RDF) http://dbpedia.org/data/Indonesia mpiled by Fariz Darari

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 Faculty of Computer Science Universitas Indonesia

CSCE604131 | Jejaring Semantik (Knowledge Graphs) RDF Schema (RDFS)

Fariz Darari, Ph.D.

RDF Schema (RDFS)

UNIVERSITAS UNIVERSITAS Unite Profession Voter Profession COLEVICE

- RDFS is a vocabulary for modeling schemas used in RDF data.
- RDFS provides mechanisms for defining classes and properties.
- Via RDFS, e.g., one can provide the domains and ranges of properties.
- The official document of RDFS is available: https://www.w3.org/TR/rdf-schema/

DDE Cabarra 1.1
RDF Schema 1.1
W3C Recommendation 25 February 2014
This version:
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
Latest published version:
http://www.w3.org/TR/rdf-schema/
Previous version:
http://www.w3.org/TR/2014/PER-rdf-schema-20140109/
Editors:
<u>Dan Brickley</u> , Google
R.V. Guha, Google
Previous Editors:
Brian McBride

RDFS Classes

- Resources (or things) can be organized into groups called classes.
- The members of a class are called **instances** of the classes.
- The property **rdf:type** is used to state that a resource is an instance of a class.

Properties

- An RDF property is a relation between subject resources and object resources.
- Through RDFS, one can state the **domain** of a property: any resource that has a given property is an instance of a class.
- Through RDFS, one can state the **range** of a property: the values of a property are instances of a class.

RDFS subClassOf and subPropertyOf

- The property rdfs:subClassOf is used to state that all instances of one class are instances of another class.
- The property **rdfs:subPropertyOf** is used to state that all resources related by one property are also related by another property.

RDFS subClassOf Example

Other RDFS properties: Documentation

rdfs:seeAlso

Compiled by Fariz Darari

Defines a relation of a resource to another, which explains it.

- rdfs:comment
 Comment, usually as text.
- rdfs:label

Human-readable name of a resource (contrary to ID).

RDFS Example about Cultural Heritage (in RDF Turtle)

@prefix bkb: <https://budayakb.cs.ui.ac.id/ns#> .
@prefix bkbr: <https://budayakb.cs.ui.ac.id/resource/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

bkb:WarisanBudaya a rdfs:Class . # a is shortcut for rdf:type bkb:WarisanBudaya rdfs:label "Cultural Heritage"@en .

bkb:WarisanBudayaBenda rdfs:subClassOf bkb:WarisanBudaya .
bkb:WarisanBudayaBenda rdfs:label "Tangible Cultural Heritage"@en .

bkb:originFromProvince a rdf:Property .
bkb:originFromProvince rdfs:label "origin from province"@en .
bkb:originFromProvince rdfs:range bkb:Provinsi .

RDFS Example about Cultural Heritage (cont.)

bkbr:GamelanBali a bkb:WarisanBudayaBenda ;
 bkb:originFromProvince bkbr:Bali .

In the example above, Gamelan Bali is not only a Warisan Budaya Benda (Tangible Cultural Heritage) but also a Warisan Budaya (Cultural Heritage) due to the RDFS statement that Warisan Budaya Benda is a subclass of Warisan Budaya.

Furthermore, we know from the range of originFromProvince that Bali is indeed of type Provinsi.

RDFS Example about Greenhouse Gas (by Prof. Harald Sack)

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@orefix owl: <http://www.w3.org/2002/07/owl#>
@prefix : <http://example.org/Climate#> .

	:Greenhouse_gas :Person :Scientist :Physicist :Chemist	rdf:type rdfs:subClassOf rdf:type rdfs:subClassOf rdfs:subClassOf rdfs:subClassOf	rdfs:Class ; :Air_pollutant . rdfs:Class . :Person . :Scientist . :Scientist .	Class Definitions
:discoverer rdf:type rdf:Property; rdfs:domain owl:Thing . rdfs:range :Person .				Property Definitions
	:Carbon_dioxide :Jan_Baptist_van_He :Joseph_Black	rdf:type :discoveren :discoveren :discoveren rdf:type rdf:type rdfs:label rdfs:commen	:Greenhouse_gas ; : Jan_Baptist_van_Helmont ; : Joseph_Black . : Physicist . : Chemist ; "Joseph Black"@en ; nt "co-discovered CO2" .	Instance Definitions

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 Faculty of Computer Science Universitas Indonesia

CSCE604131 | Jejaring Semantik (Knowledge Graphs) SKOS: Simple Knowledge Organization System

Fariz Darari, Ph.D.

SKOS

- SKOS is short for Simple Knowledge Organization System.
- It is a vocabulary for expressing the basic structure and content of concept schemes such as thesauri and taxonomies.
- SKOS allows concepts and relationships among concepts to be composed and published on the World Wide Web.
- The official documentation links of SKOS are at: > https://www.w3.org/TR/skos-primer/
 > https://www.w3.org/TR/skos-reference/

SKOS to create controlled vocabularies

So basically, SKOS enables us to create a controlled vocabulary.

A controlled vocabulary is an organized arrangement of words and phrases used to index content and/or to retrieve content through browsing or searching. It typically includes preferred and variant terms and has a defined scope or describes a specific domain. (Harpring, P., 2010)

Thesaurus

TAXONOMY: Label or tag content into defined categories so we can rearrange, reuse, organize, search, and distribute it.

Fariz Darari

SKOS Basics

- Concept is the central element of SKOS
- To create a concept, one has to create a Uniform Resource Identifier (URI) for the concept and assign the URI using rdf:type skos:Concept
- SKOS provides properties to attach labels to a concept: skos:prefLabel, skos:altLabel, and skos:hiddenLabel.

ex:cat rdf:type skos:Concept; skos:prefLabel "cat"@en; skos:altLabel "kitten"@en; skos:prefLabel "Katze"@de.

SKOS Semantic Relationships

skos:broader and skos:narrower assert hierarchical relationships between concepts: that one concept has a broader concept or a narrower concept

ex:animals rdf:type skos:Concept; skos:prefLabel "animals"@en; skos:narrower ex:mammals.

ex:mammals rdf:type skos:Concept; skos:prefLabel "mammals"@en; skos:broader ex:animals.

SKOS Semantic Relationships (cont.)

skos:related enables the representation of associative relationships between two concepts.

Compiled by Fariz Darari

ex:FormulaOne skos:related ex:MichaelSchumacher .
ex:Vegetable skos:related ex:Fruit .
ex:Pencil skos:related ex:Writing .

SKOS Collection & Membership

SKOS collections are used to describe groups of SKOS concepts.

Compiled by Fariz Darari

ex:Veggies a skos:Collection ;
 skos:prefLabel "Sayur-mayur"@id ;
 skos:member ex:lettuce, ex:tomato, ex:onion,
 ex:cucumber, ex:carrot .

SKOS Documentation

- skos:note: general documentation purposes Compiled by Fariz D
- skos:scopeNote: some information about a concept
- skos:definition: complete explanation of a concept
- skos:example: an example of the use of a concept
- skos:historyNote: significant changes to the meaning or form of a concept
- skos:editorialNote: administrative aid related to a concept
- skos:changeNote: fine-grained changes to a concept

SKOS Documentation Example

ex:cat rdf:type skos:Concept; skos:prefLabel "cat"@en; skos:prefLabel "Katze"@de; skos:altLabel "kitten"@en; skos:hiddenLabel "katze"@de; skos:definition "A small carnivorous mammal with soft fur, a short snout, and retractable claws."@en; skos:editorialNote "Review this term after merge."@en; skos:changeNote "Added hidden label."@en.

SKOS example: UNESCO Thesaurus

UNESCO TI	hesaurus			Content language English -	×	Search	
AlphabeticalHierarchyGroupsA B C D EF G H I J K L M N O		Vocabulary information					
P Q R S T	U V W X Y	Z	TITLE	UNESCO Thesaurus			
Abadi → Awadhi Abandoned children Abbreviations Ability Ability grouping Abohi → Awadhi Aboriginals → Indigenous peoples			DESCRIPTION	The UNESCO Thesaurus is a controlled and structured list of terms used in subject analysis and retrieval of documents and publications in the fields of education, culture, natural sciences, social and human sciences, communication and information. Continuously enriched and updated, its multidisciplinary terminolog reflects the evolution of UNESCO's programmes and activities.		bject on, ology	
Abortion Absenteeism \rightarrow Leave Abstract journals \rightarrow Abstracts Abstract reasoning \rightarrow Reasoning Abstracting		IDENTIFIER	http://vocabularies.unesco.org/thesaurus				
		PUBLISHER	UNESCO				
http://vocabularies.unesco.org/browser/thesaurus/en/							

SKOS example: UNESCO Thesaurus (cont.)

UNESCO Thesaurus ASEAN countries > Indonesia Islamic countries > Indonesia South East Asia > Indonesia E-9 countries > Indonesia Indonesia 崤 PREFERRED TERM Search in UNESDOC **ASEAN** countries BROADER CONCEPT E-9 countries Islamic countries South East Asia RELATED CONCEPTS Timor-Leste Countries and country groupings > Asia and the Pacific **BELONGS TO GROUP** IN OTHER LANGUAGES اندو نيسيا Arabic Indonésie French Индонезия Russian Indonesia Spanish http://vocabularies.unesco.org/thesaurus/concept830 💃

URI

Download this concept:

RDF/XML TURTLE ISON-LD

Last modified 12/15/19

References:

- https://www.w3.org/TR/skos-primer/
- https://campus.dariah.eu/resource/controlled-vocabularies-and-skos
- https://www.ala.org/alcts/resources/z687/skos

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 Faculty of Computer Science Universitas Indonesia

FACULTY OF COMPUTER SCIENCE

UNIVERSITAS Indonesia

CSCE604131 | Jejaring Semantik (Knowledge Graphs) SPARQL

Fariz Darari, Ph.D.

SPARQL

- If RDF captures knowledge, then SPARQL retrieves knowledge, querying knowledge captured by RDF!
- Short for: SPARQL Protocol and RDF Query Language
- Example:

@prefix ex: <https://example.org/resource/> .
@prefix prop: <https://example.org/property/> .

```
ex:matt prop:knows ex:scott .
```

ex:matt prop:twitterAccount <https://twitter.com/mattt7812> .

SELECT ?friend WHERE {
 ex:matt prop:knows ?friend }

Who are Matt's friends?

W3C SPARQI

SPARQL (cont.)

@prefix ex: <https://example.org/resource/> .
@prefix prop: <https://example.org/property/> .

ex:matt prop:knows ex:scott .

ex:matt prop:twitterAccount <https://twitter.com/mattt7812> .

SELECT ?twitter WHERE {
 ?person prop:twitterAccount ?twitter .
 ?person prop:knows ex:scott }

What are the Twitter accounts of people knowing Scott?

Compiled by Fariz Darari

W3C SPARQ

Computer Science

SPARQL Documentation

https://www.w3.org/TR/sparql11-query/

SPARQL 1.1 Query Language

W3C Recommendation 21 March 2013

This version:

W3C*

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

Latest version:

http://www.w3.org/TR/sparql11-query/

Previous version:

http://www.w3.org/TR/2012/PR-sparql11-query-20121108/

Editors:

Steve Harris, Garlik, a part of Experian Andy Seaborne, The Apache Software Foundation

Previous Editor:

Eric Prud'hommeaux, W3C

Please refer to the errate for this document, which may include some normative corrections.

See also translations

Copyright © 2013 W3C[®] (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

RDF is a directed, labeled graph data format for representing information in the Web. This specification defines the syntax and semantics of the SPARQL query language for RDF. SPARQL can be used to express queries across diverse data sources, whether the data is stored natively as RDF or viewed as RDF via middleware. SPARQL contains capabilities for querying required and optional graph patterns along with their conjunctions and disjunctions. SPARQL also supports aggregation, subqueries, negation, creating

UNIVERSITA Indonesia

Computer Science

SPARQL Example

name	mbox
"Johnny Lee Outlaw"	<mailto:jlow@example.com></mailto:jlow@example.com>
"Peter Goodguy"	<mailto:peter@example.org></mailto:peter@example.org>

COMPUTER

SPARQL Example (2)

```
@prefix dc:
          <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .
                                      Compiled by Fariz Darari
:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42.
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23.
```


title

"SPARQL Tutorial"

SPARQL Example (3)

```
@prefix dc:
          <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .
                                      Compiled by Fariz Darari
:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42.
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23.
```


title

Compiled by Fariz Darari "The Semantic Web"

SPARQL Example (4)

```
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .
Compiled by Fariz Darari
:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .
```


SPARQL Components

In general, a SPARQL query consists of four components: d by Fariz Darari

- Prefixes
- Result form
- Query pattern (that is based on triple patterns)
- Solution modifier

SPARQL Components (cont.)

query: legislation by UK Parliament
link query: http://bit.ly/2NjRXhE

```
# prefixes
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
```

```
# result form
SELECT ?lawLabel
# query pattern
```

```
{
    ?law wdt:P467 wd:Q11010 . # ?law - legislated by - Parliament of the UK
    ?law rdfs:label ?lawLabel .
    FILTER (LANG(?lawLabel) = "en")
}
# solution modifier
LIMIT 20
```


COMPUTE

Over the Wikidata knowledge graph, give legislation by UK Parliament!

SPARQL Components (cont.)

lawLabel

Coinage (Measurement) Act 2011

Coinage Act 1870

Coinage Offences Act 1936

Coinage Offences Act 1832

Commissioner for Older People (Wales) Act 2006

Commissioners for Revenue and Customs Act 2005

. . . .

Common Informers Act 1951

Commonhold and Leasehold Reform Act 2002

Compiled by Fanz Daran

d by Fariz Darari

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 Faculty of Computer Science Universitas Indonesia

FACULTY OF COMPUTER SCIENCE

CSCE604131 | Jejaring Semantik (Knowledge Graphs) Advanced SPARQL

Fariz Darari, Ph.D.

SPARQL Graph Patterns

SPARQL is based around graph pattern matching:

- Basic Graph Patterns (BGPs), where a set of triple patterns must match.
- Group Graph Pattern, where a set of graph patterns must all match.
- Optional Graph patterns, where additional patterns may extend the solution.
- Alternative Graph Pattern, where two or more possible patterns are tried.
- Patterns on Named Graphs, where patterns are matched against named graphs.

Basic Graph Pattern

Basic graph patterns are sets of triple patterns.

SPARQL graph pattern matching is defined in terms of combining the results from matching basic graph patterns.

A sequence of triple patterns, possibly with filters, comprises a single basic graph pattern.

SPARQL evaluates basic graph patterns using subgraph matching, which is defined for simple entailment.

Group Graph Pattern

In a SPARQL query string, a group graph pattern is delimited with braces: {}.

For example, this query's query pattern is a group graph pattern of one basic graph pattern.

Empty Group Pattern

The group pattern { } matches any graph (incl. the empty graph) with one solution that does not bind any variables.

For example, the following

SELECT ?x
WHERE { }

matches one solution where var x is not bound.

Scope of Filters

A constraint, expressed by the keyword FILTER, is a restriction on solutions over the whole group in which the filter appears. The following patterns all

have the same solutions:

```
{ ?x foaf:name ?name .
   ?x foaf:mbox ?mbox .
   FILTER regex(?name, "Smith")
}
{ FILTER regex(?name, "Smith")
   ?x foaf:name ?name .
   ?x foaf:mbox ?mbox .
}
```

?x foaf:name ?name .
FILTER regex(?name, "Smith")
?x foaf:mbox ?mbox .

Optional Patterns

<pre>@prefix foaf: @prefix rdf:</pre>	<http: 0.1="" foaf="" xmlns.com=""></http:> . <http: 02="" 1999="" 22-rdf-syntax-ns#="" www.w3.org=""></http:>
_:a rdf:type	foaf:Person .
_:a foaf:name	"Alice" .
_:a foaf:mbox	<mailto:alice@example.com≻ .<="" td=""></mailto:alice@example.com≻>
_:a foaf:mbox	<mailto:alice@work.example≻ .<="" td=""></mailto:alice@work.example≻>
_:b rdf:type	foaf:Person .
_:b foaf:name	"Bob" .

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name .
OPTIONAL { ?x foaf:mbox ?mbox }
}
Compiled by Fariz paran
```


Optional Patterns (cont.)

Compiled by Fariz Darari

name	mbox
"Alice"	<mailto:alice@example.com></mailto:alice@example.com>
"Alice"	<mailto:alice@work.example></mailto:alice@work.example>
"Bob"	

Alternative Patterns


```
@prefix dc10: <http://purl.org/dc/elements/1.0/> .
@prefix dc11: <http://purl.org/dc/elements/1.1/> .
                   "SPARQL Query Language Tutorial"
   dc10:title
:a
                   "Alice" .
    dc10:creator
:a
:b dc11:title
                  "SPARQL Protocol Tutorial" .
   dc11:creator
                   "Bob" .
:b
   dc10:title
                  "SPAROL" .
 :c
   dc11:title
                   "SPARQL (updated)" .
:c
```

```
PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { { ?book dc10:title ?title } UNION { ?book dc11:title ?title } }
```


Alternative Patterns (cont.)

Compiled by Fariz Darari

title

"SPARQL Protocol Tutorial"

"SPARQL"

"SPARQL (updated)"

"SPARQL Query Language Tutorial"

Patterns on Named Graphs

When querying a collection of graphs, the GRAPH keyword is used to match patterns against named graphs.

GRAPH can provide an IRI to select one graph or use a variable which will range over the IRI of all the named graphs in the query's RDF dataset.

The use of GRAPH changes the active graph for matching graph patterns within that part of the query.

Outside the use of GRAPH, matching is done using the default graph.

Patterns on Named Graphs (cont.)

# Named graph: htt	
· ·	p://example.org/toat/allceroat
@prefix foaf:	<http: 0.1="" foaf="" xmlns.com=""></http:> .
@prefix rdf:	<pre><http: 02="" 1999="" 22-rdf-syntax-ns#="" www.w3.org=""></http:></pre>
@prefix rdfs:	<http: 01="" 2000="" rdf-schema#="" www.w3.org=""> .</http:>
:a foaf:name	"Alice" .
	<mailto:alice@work.example> .</mailto:alice@work.example>
_:a foaf:knows	_:b .
:b foaf:name	"Bob" .
:b foaf:mbox	<mailto:bob@work.example≻ .<="" td=""></mailto:bob@work.example≻>
	"Bobby" .
_:b foaf:nick _:b rdfs:seeAlso	<pre>"Bobby" . <http: bobfoaf="" example.org="" foaf=""> . </http:></pre>
_:b foaf:nick _:b rdfs:seeAlso <http: example.or<br="">rdf:type</http:>	<pre>"Bobby" . <http: bobfoaf="" example.org="" foaf=""> .</http:></pre>
_:b foaf:nick _:b rdfs:seeAlso <http: example.or<br="">rdf:type # Named graph: htt</http:>	<pre>"Bobby" .</pre>
_:b foaf:nick _:b rdfs:seeAlso <http: example.or<br="">rdf:type # Named graph: htt Oprefix foaf:</http:>	<pre>"Bobby" .</pre>
_:b foaf:nick _:b rdfs:seeAlso <http: example.or<br="">rdf:type # Named graph: htt @prefix foaf: @prefix rdf:</http:>	<pre>"Bobby" .</pre>
_:b foaf:nick _:b rdfs:seeAlso <http: example.or<br="">rdf:type # Named graph: htt @prefix foaf: @prefix rdf: @prefix rdf:</http:>	<pre>"Bobby" .</pre>
_:b foaf:nick _:b rdfs:seeAlso <http: example.or<br="">rdf:type # Named graph: htt @prefix foaf: @prefix rdf: @prefix rdfs:</http:>	<pre>"Bobby" .</pre>
_:b foaf:nick _:b rdfs:seeAlso <http: example.or<br="">rdf:type # Named graph: htt @prefix foaf: @prefix rdf: @prefix rdfs: _:z foaf:mbox</http:>	<pre>"Bobby" .</pre>
_:b foaf:nick _:b rdfs:seeAlso <http: example.or<br="">rdf:type # Named graph: htt @prefix foaf: @prefix rdf: @prefix rdfs: _:z foaf:mbox _:z rdfs:seeAlso</http:>	<pre>"Bobby" .</pre>

rdf:type foaf:PersonalProfileDocument .

d by Fariz Darar

UNIVERSITA Indonesi/

Computer Science

Patterns on Named Graphs (cont.)

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

```
SELECT ?src ?bobNick
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE
{
    GRAPH ?src
    { ?x foaf:mbox <mailto:bob@work.example> .
    ?x foaf:nick ?bobNick
    }
}
```

src	bobNick
<pre>khttp://example.org/foaf/aliceFoaf></pre>	"Bobby"
<pre>khttp://example.org/foaf/bobFoaf></pre>	"Robert"

Credits:

- https://www.w3.org/TR/sparql11-query/

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 Faculty of Computer Science Universitas Indonesia

CSCE604131 | Jejaring Semantik (Knowledge Graphs) Wikidata & DBpedia

Fariz Darari, Ph.D.

Wikipedia

Talk S

WIKIPEDIA The Free Encyclopedia

Main page Contents Featured content Current events Random article Donate to Wikipedia Wikipedia store

Interaction

Tools

Help About Wikipedia Community portal Recent changes Contact page

Talk	Read	Edit	View history	☆	More

Malang

Article

From Wikipedia, the free encyclopedia

This article is about the city. For other uses, see Malang (disambiguation).

Malang (/.mo'lon-/; Javanese: http://within.com/) is the second largest city in the Indonesian province of East Java. It has a history dating back to the age of Singhasari Kingdom. As the second most populous city in the province, the 2016 census recorded 887,443 people in the city.^[3] Its metro area is home to 3,663,691 inhabitants spread across two cities and 22 districts (21 in Malang Regency and one in Pasuruan Regency).^[4]

The city is well known for its mild climate. During the period of Dutch colonization, it was a popular destination for European residents. Until now, Malang still holds its position a popular destination for international tourists.^[5] Malang keeps various historical relics. This city keeps relics of the Kingdom of Kanjuruhan period until the Dutch period.^[6] Dutch heritage in general in the form of ancient buildings such as the Kayutangan church and Ijen cathedral which has gothic architecture. Malang also held various events to preserve its cultural heritage, one of them is the Malang Tempo Doeloe Festival. Malang also has a lot of historical heritage which has become a landmark like Tugu Malang (*Alun-alun Bundar*). Malang is also well known because it is labeled as an educational city. This city has one of the best universities in Indonesia such as Brawijaya University and Malang State University.^[7]

💄 Fadirra 🔰

Wikipedia (cont.)

Tools

What links here Related changes Upload file Special pages Permanent link Page information Wikidata item Cite this page Malang has various ethnic groups 895,387 people with a majority of or notable known as *Malang Raya* Metropolitan Area). If viewed from Javanese.^[9]

State University.[7]

Malang was spared many of the e and population growth.^[10]

Wikipedia (cont.)

https://en.wikipedia.org/wiki/Main_Page

Wikipedia's sister projects

Wikipedia is hosted by the Wikimedia Foundation, a non-profit organization that also hosts a range of other projects:

Commons Free media repository

Wikibooks Free textbooks and manuals

Wikiquote Collection of quotations

Wikiversity Free learning materials and activities

MediaWiki Wiki software development

Wikidata Free knowledge base

Wikisource Free-content library

Wikivoyage Free travel guide

Wikidata

WIKIDATA

Item	Discussion	Read	View history	☆	
N	Ialang (Q11445)				

city in East Java Province, Indonesia

and the second second

Configure

 In more languages 			
Language	Label	Description	Also known as
English	Malang	city in East Java Province, Indonesia	
Indonesian	Malang	kotamadya di provinsi Jawa Timur, Indonesia	Kota Malang
Javanese	Kutha Malang	kutha ing provinsi Jawa Wétan, Indonésia	
Sundanese	Kota Malang	No description defined	

All entered languages

Compiled	country	🗧 Indonesia	✔ edit
		► 1 reference	

Statements

instance of

Wikidata's RDF

d by Fariz Darari

Wikidata's RDF (cont.)

Compiled by Fariz Darari

.

SPARQL Querying over Wikidata

	Wikidata Query Service	🗁 Examples	\varTheta Help 👻	More tools	•	
0	1 # current Malang's head of 2 SELECT ?kepalaDaerah ?kepa	government laDaerahLabel				
×	3 WHERE { 4 wd:011445 wdt:P6 ?kepala	Daerah .				
# -	5 SERVICE wikibase:label {	bd:serviceParam	m wikibase:langu	uage "[AUTO_LANG	GUAGE],en". }	
\Leftrightarrow	0 1					
B						
Э						
Û						
%						
• •	0					
kepalaD	aerah			🔶 kepala	DaerahLabel	
Q wd:Q	56391433			Sutiaji		

Wikidata Key Features

Compiled by Fariz Darari

- It is like Wikipedia but for data!
- In other words, it's the knowledge graph version of Wikipedia
- It is crowdsourced, anyone/anything can add data
- It is free, and can be used commercially
- As of 2021, it's got 1.2 billion facts about 92 million subjects! (Wikipedia "only" has 6.3 million subjects!)

About: Telkom Indonesia

An Entity of Type : Public company, from Named Graph : http://dbpedia.org, within Data Space : o

PT Telekomunikasi Indonesia, Tbk, commonly abbreviated as Te telecommunications services company in Indonesia. Telkom is a multiple exchanges. Since this privatization in 1995, Telkom Indo customers at end of December 2011 increased by 7.8% from 20' telecommunication service provider by subscribers.

Property	Value
dbo:abstract	 PT Telekomunikasi Indonesia, Tbk, commonly abl services company in Indonesia. Telkom is a semi- Indonesia is the telecommunication business unit company of the Telkom Group, which is engaged property and finance services. Since 2008, Telkor organization and human resources, as well as the 1995, Telkom Indonesia has a combined total of a from 2010, making the company the nation's large
dbo:assets	• 1.1364E10
dbo:equity	• 5.24E9

99

DBpedia Key Features

DBpedia key features: mpiled by Fariz Darari

- It extracts data from Wikipedia infoboxes (summary box on top right corner).
- It is free, and can be used commercially
- It's got 9.5 BILLION facts about >6 million subjects!
- It conforms to the W3C's KG standards

DBpedia Indonesia

Content-Length: 263403 About: Universitas Indonesia

An Entity of Type : <u>Perguruan tinggi negeri</u>, from Named Graph : <u>http://id.dbpedia.org</u>, within Data Space : <u>id.dbpedia.org</u>

UNIVERSITA Indonesia

Computer Science

Universitas Indonesia, disingkat UI, adalah sebuah perguruan tinggi di Indonesia. Kampus utamanya terletak di bagian Utara dari Depok, Jawa Barat, dan kampus utama lainnya terdapat di daerah Salemba di Jakarta Pusat. UI secara umum dianggap sebagai salah satu dari tiga perguruan tinggi papan atas di Indonesia bersama dengan Universitas Gadjah Mada dan Institut Teknologi Bandung.

		Property	Value
e	s	dbpedia-owl:abstract	 Universitas Indonesia, disingkat UI, adalah sebuah perguruan tinggi di Indonesia. Kampus uta terletak di bagian Utara dari Depok, Jawa Barat, dan kampus utama lainnya terdapat di daeral Jakarta Pusat. UI secara umum dianggap sebagai salah satu dari tiga perguruan tinggi papan Indonesia bersama dengan Universitas Gadjah Mada dan Institut Teknologi Bandung. Universitas Indonesia, disingkat UI, adalah sebuah perguruan tinggi di Indonesia. Kampus uta terletak di bagian Utara dari Depok, Jawa Barat, dan kampus utama lainnya terdapat di daeral Jakarta Pusat. UI secara umum dianggap sebagai salah satu dari tiga perguruan tinggi papan Indonesia. Kampus uta terletak di bagian Utara dari Depok, Jawa Barat, dan kampus utama lainnya terdapat di daeral Jakarta Pusat. UI secara umum dianggap sebagai salah satu dari tiga perguruan tinggi papan Indonesia bersama dengan Universitas Gadjah Mada dan Institut Teknologi Bandung.
		dbpedia-owl:affiliation	 dbpedia-id:Association_of_Pacific_Rim_Universities dbpedia-id:Association_of_Pacific_Rim_Universities dbpedia-id:Association_of_Southeast_Asian_Institutions_of_Higher_Learning dbpedia-id:Association_of_Southeast_Asian_Institutions_of_Higher_Learning dbpedia-id:Jaringan_Universitas_ASEAN dbpedia-id:Jaringan_Universitas_ASEAN
		dbpedia-owl:campus	 dbpedia-id:Area_urban dbpedia-id:Area_urban
		dbpedia-owl:country	 dbpedia-id:Indonesia dbpedia-id:Indonesia
		dbpedia-owl:locationCity	 dbpedia-id:Kota_Depok dbpedia-id:Kota_Depok

KGs from time to time: 2007

http://lod-cloud.net/

KGs from time to time: 2021

biled by Fariz Dar

http://lod-cloud.net/

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 Faculty of Computer Science Universitas Indonesia

UNIVERSITAS Indonesia

CSCE604131 | Jejaring Semantik (Knowledge Graphs) OWL

Fariz Darari, Ph.D.

OWL: The Schema Part (of KGs)

Short for: Web Ontology Language (WOL? No, it is OWL!)

Key features:

Compiled by Fariz Darari

- Vocabulary description

For example: To say that prop:knows can be used to link between two things

- Reasoning: You can conclude new things based on existing facts!

For example: owl subClassOf bird + bird subClassOf animal Now, if Bobi is an owl, do you think Bobi is an animal?

Compiled by Fariz Darari

Image: http://www.bukabuku.com/browses/product/9789797811211/pop-upbobi-si-burung-hantu.html

Yes

OWL Characteristics

Compiled by Fariz Darari

- OWL is a language to create ontologies
- OWL is more expressive/heavyweight compared to RDFS
- Ontology: Explicit specification of a conceptualization
- So ontology specifies concepts, relations, and other characterizations pertaining to domain modeling
- Such a specification can be called **semantics**

OWL Characteristics (cont.)

- OWL enables inferencing over data (+ schema)
- Example inferences: Consistency checking and hierarchy reasoning
- OWL 2 is standardized in 2012
- Specification by W3C can be found at: https://www.w3.org/TR/owl-primer/

Compiled by Fariz Darari

W3C^{*}

OWL 2 Web Ontology Language Primer (Second Edition)

W3C Recommendation 11 December 2012

This version: http://www.w3.org/TR/2012/REC-owl2-primer-20121211/ Latest version (series 2): http://www.w3.org/TR/owl2-primer/ Latest Recommendation: http://www.w3.org/TR/owl-primer Previous version: http://www.w3.org/TR/2012/PER-owl2-primer-20121018/ Editors: Pascal Hitzler, Wright State University Markus Krötzsch, University of Oxford Bijan Parsia, University of Manchester Peter F. Patel-Schneider, Nuance Communications Sebastian Rudolph, FZI Research Center for Information Technology

Computer Science

Basic OWL Features

- Class and Instance
 :Mary rdf:type :Woman .
- Class Hierarchy
 :Woman rdfs:subClassOf :Person .
- Class Disjointness :Woman owl:disjointWith :Man.

Compiled by Fariz Darari

Basic OWL Features (cont.)

• Object Property :John :hasWife :Mary .

- Datatype Property
 :John :hasAge "18"^^xsd:integer .
- Hierarchy Property
 :hasWife rdfs:subPropertyOf :hasSpouse .
- Instance Equality and Difference
 :John owl:differentFrom :Bill .
 - :James owl:sameAs :Jim .

Complex OWL Features

• Complex classes

Mother is equivalent to the intersection between Woman and Parent

- Property restrictions
 Class Parent is a class from instances relating to a Person through the property hasChild
- Property cardinality restrictions Human has at most two parents
- Inverse properties hasParent is an inverse from hasChild
- Property chains
 Two hasParent sequence make up property hasGrandparent
- Keys

Two instances are the same if having the same SSNs

UNCERSITAS INDUCESSI Varias Varias Varias Varias COMPUTER SCIENCE

List of Ontologies

- Schema.org: https://schema.org/
- FOAF (Friend-of-a-Friend): http://xmlns.com/foaf/spec/
- vCard: http://www.w3.org/2006/vcard/ns#
- Dublin Core: http://purl.org/dc/terms/
- PROV: http://www.w3.org/ns/prov#

Ontology Development 101

- 1. Determine the domain and scope of the ontology Fariz Darari
- 2. Consider reusing existing ontologies
- 3. Enumerate important terms in the ontology
- 4. Define the classes and the class hierarchy
- 5. Define the properties of classes—slots
- 6. Define the facets of the slots
- 7. Create instances

https://protege.stanford.edu/publications/ontology_development/ontology101.pdf

Credits:

- W3C specifications
- Semantic Web & Knowledge Graph literature

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 Faculty of Computer Science Universitas Indonesia

CSCE604131 | Jejaring Semantik (Knowledge Graphs) SHACL

Fariz Darari, Ph.D.

SHACL

- SHACL: SHApe Constraint Language
- SHACL is a language to define shape and constraint rules for RDF data
- SHACL is a W3C Recommendation since July 2017
- SHACL is useful for describing and validating RDF data
- SHACL specification is available at: https://www.w3.org/TR/shacl/

Shapes Constraint Language (SHACL) W3C Recommendation 20 July 2017

This version:

https://www.w3.org/TR/2017/REC-shacl-20170720/

Latest published version:

https://www.w3.org/TR/shacl/

Latest editor's draft:

https://w3c.github.io/data-shapes/shacl/

Implementation report:

https://w3c.github.io/data-shapes/data-shapes-test-suite/

Previous version:

https://www.w3.org/TR/2017/PR-shacl-20170608/

Editors:

Holger Knublauch, TopQuadrant, Inc.

Dimitris Kontokostas, University of Leipzig

SHACL Terms

- SHACL is for validating RDF KGs against a set of conditions.
- These conditions are called shapes. Compiled by Fariz Darari
- So, in SHACL there are two types of graphs:

> Shapes graphs: to validate

> Data graphs: to be validated

• SHACL usages: validation, user interface building, code generation and data integration.

SHACL Shape

- A SHACL shape has two main components: target and constraint
- Target specifies which part of data has to conform to a shape
- Constraint determines how a target can be validated

SHACL Tool: SHACL Play!

🔂 SHACL Play! Validate Convert Draw Generate documentation | Shapes Catalog Rules Catalog

Validate RDF data

ംപ്പ് Input Data

Upload	企	Select file
	You can select multiple files. Supported extensions : .rdf, .ttl, .n3, .trig as RDF/XML. You can also send <i>zip files</i> .	. Other extensions will be treated
OURL	http:// (URL of RDF file)	
	URL of an RDF file. Same extensions as file upload are supported. For an example, you can try validating the Shapes catalog data, again Catalog Shapes" in the list below.	st the Shape "SHACL Play!
O Copy/paste RDF content		
	Supported syntaxes : Turtle, RDF/XML, JSON-LD, TriG, TriX, N-Quads.	// We recommend Turtle.
A Shapes		
Upload	企	Select file
	You can select multiple files. Supported extensions : .rdf, .ttl, .n3, .trig as RDF/XML	. Other extensions will be treated

piled by Fariz Darari

https://shacl-play.sparna.fr/play/validate

SHACL Shape: Color of Among Us characters is Pink or Purple

```
@prefix ex: <http://example.org/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
```

```
ex:MyShape
a sh:NodeShape ;
sh:targetClass ex:AmongUsCharacter ;
sh:property [
   sh:path ex:color ;
   sh:in ( ex:Pink ex:Purple )
] .
```


SHACL Shape: Color of Among Us characters is Pink or Purple - Erroneous Data

@prefix ex: <http://example.org/> .

ex:Tom a ex:AmongUsCharacter ;
 ex:color ex:Green .

SHACL Shape: Color of Among Us characters is Pink or Purple - Valid Data

@prefix ex: <http://example.org/> .

ex:Tom a ex:AmongUsCharacter ;
 ex:color ex:Purple .

Validation results of 1 shapes

Download validation report in CSV Turtle RDF/XML

Valid Data is conformant !

Compiled by Fariz

SHACL Shape: Property cardinality and value (string) length

```
@prefix ex: <http://example.org/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ex:MyShape
       a sh:NodeShape ;
       sh:targetNode ex:MyInstance ;
       sh:property [
               sh:path ex:myProperty ;
               sh:minCount 1 ;
               sh:datatype xsd:string ;
               sh:severity sh:Warning ; # warning-level constraint
       ];
       sh:property [
              # the default severity here is sh:Violation
               sh:path ex:myProperty ;
               sh:maxLength 10 ;
               sh:message "Too many characters"@en ;
       ].
```

Computer

Science

UNIVERSITAS INDONESIA Write: Findea: dution Recurry OF COMPUTER SCIENCE

@prefix ex: <http://example.org/> .

ex:MyInstance
 ex:someProperty "morethan10chars" .

```
Validation results of 1 shapes
```

Download validation report in CSV Turtle RDF/XML

1 Warning

Warning 1 "Property needs to have at least 1 values, but found 0" (ex:myProperty)

@prefix ex: <http://example.org/> .

```
ex:MyInstance
    ex:myProperty "morethan10chars" .
```

```
Validation results of 1 shapes

Download validation report in CSV Turtle RDF/XML

1 Violation
```

Violation 1 "Too many characters" (ex:myProperty) see details

Compiled by ranz varan

SHACL Shape: Property cardinality and value (string) length - Valid Data

@prefix ex: <http://example.org/> .

```
ex:MyInstance
    ex:myProperty "bob" .
```

Validation results of 1 shapes

Download validation report in CSV Turtle RDF/XML

Valid Data is conformant !

Compiled by Fariz L

SHACL Core Constraint Components

Operation	Parameters
Cardinality constraints	sh:minCount, sh:maxCount
Value types	sh:class, sh:datatype, sh:nodeKind sh:in, sh:hasValue
Value range constraints	sh:minInclusive, sh:maxInclusive sh:minExclusive, sh:maxExclusive
String based constraints	sh:minLength, sh:maxLength sh:Length sh:pattern
Language based	sh:uniqueLang, sh:LanguageIn
Logical constraints	sh:and, sh:or, sh:xone, sh:not
Shape-based constraints	sh:node, sh:property sh:qualifiedValueShape, sh:qualifiedValueShapesDisjoint sh:qualifiedMinCount sh:qualifiedMaxCount
Closed shapes	sh:closed, sh:ignoredProperties
Property pair constraints	sh:equals, sh:disjoint sh:lesThan, sh:lessThanOrEquals
Non-validating constraints	sh:name, sh:description, sh:order, sh:group

UNIVERSITAS INDONESIA Warden Fundater Suddar KCULTY OF COMPUTER SCIENCE

riz Darari

Credits:

.

.

- https://book.validatingrdf.com/bookHtml011.html
- https://www.ida.liu.se/~robke04/SHACLTutorial/Introduction%20to%20SHACL.pdf
- <u>https://www.w3.org/TR/shacl/</u>
- https://among-us.fandom.com/

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021

by Faculty of Computer Science Universitas Indonesia

FACULTY OF COMPUTER SCIENCE

UNIVERSITAS Indonesia

CSCE604131 | Jejaring Semantik (Knowledge Graphs) KG-based data integration

Fariz Darari, Ph.D.

- Ideal: All datasets use one schema only
- Reality: Datasets are created independently, hence (potentially) different schemas
- The goal of data integration: Tie together different sources, different source schemas, under a common, unifying schema

R2RML

- R2RML: RDB to RDF Mapping Language
- A language for expressing customized mappings from relational databases to RDF datasets
- R2RML provides the ability to view existing relational data in the RDF data model, expressed in a structure and target vocabulary of the mapping author's choice
- W3C Recommendation since 2012: https://www.w3.org/TR/r2rml/

R2RML Mapping Implementations

Compiled by Fariz Darari

- A virtual SPARQL endpoint over mapped relational data
- Generate RDF dumps
- Offer a Linked Data interface

Direct Mapping

- A strategy for mapping relational data to RDF by Fariz Darari
- Direct mapping defines a simple transformation, providing a basis for defining and comparing more intricate transformations
- Can be used to materialize RDF graphs or define virtual graphs
- Difference to R2RML is that R2RML is more customized

state

Addresses

city

18 Cambridge MA

PK

ID

Direct Mapping Example: SQL DDL

```
CREATE TABLE "Addresses" (
                                                               People
        "ID" INT, PRIMARY KEY("ID"),
                                                       PΚ
                                                                 \rightarrow Address(ID)
        "city" CHAR(10),
        "state" CHAR(2)
                                                       ID fname
                                                                    addr
                                                          Bob
                                                                <u>18</u>
                                                       8
                                                          Sue
                                                                NULL
CREATE TABLE "People" (
        "ID" INT, PRIMARY KEY("ID"),
        "fname" CHAR(10),
        "addr" INT,
        FOREIGN KEY("addr") REFERENCES "Addresses"("ID")
INSERT INTO "Addresses" ("ID", "city", "state") VALUES (18, 'Cambridge', 'MA')
```

INSERT INTO "People" ("ID", "fname", "addr") VALUES (7, 'Bob', 18) INSERT INTO "People" ("ID", "fname", "addr") VALUES (8, 'Sue', NULL)

Direct Mapping Example: Generated RDF

@base <http://foo.example/DB/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<People/ID=7> rdf:type <People> . <People/ID=7> <People#ID> 7 . <People/ID=7> <People#fname> "Bob" . <People/ID=7> <People#addr> 18 . <People/ID=7> <People#ref-addr> <Addresses/ID=18> . <People/ID=8> rdf:type <People> . <People/ID=8> <People#ID> 8 . <People/ID=8> <People#fname> "Sue" .

<Addresses/ID=18> rdf:type <Addresses> .
<Addresses/ID=18> <Addresses#ID> 18 .
<Addresses/ID=18> <Addresses#city> "Cambridge" .
<Addresses/ID=18> <Addresses#state> "MA" .

People				
PΚ		$\rightarrow Address(ID)$		
ID	fname	addr		
7	Bob	<u>18</u>		
8	Sue	NULL		

AddressesPKIDcitystate18CambridgeMA

R2RML: Overview

An R2RML mapping refers to logical tables to retrieve data from the input database. A logical table can be one of the following:

- A base table,
- a view, or
- a valid SQL query (called an "R2RML view" because it emulates a SQL view without modifying the database).

R2RML: Overview

Each logical table is mapped to RDF using a **triples map**. The triples map is a rule that maps each row in the logical table to a number of RDF triples. The rule has two main parts:

- 1. A **subject map** that generates the subject of all RDF triples that will be generated from a logical table row. The subjects often are IRIs that are generated from the primary key column(s) of the table.
- 2. Multiple **predicate-object maps** that in turn consist of predicate maps and object maps (or referencing object maps).

UNDERSTAR VICTOR Produce Totalian COMPUTER SCIENCE

R2RML: Overview

Triples are produced by combining the subject map with a predicate map and object map, and applying these three to each logical table row. For example, the complete rule for generating a set of triples might be:

- Subjects: A template http://data.example.com/employee/{empno} is used to generate subject IRIs from the empno column.
- Predicates: The constant vocabulary IRI ex:name is used.
- Objects: The value of the ename column is used to produce an RDF literal.

R2RML: Example Input DB

EMPNO INTEGER PRIMARY KEY	ENAME VARCHAR(100)	JOB VARCHAR(20)	DEPTNO INTEGER REFERENCES DEPT (DEPTNO)		
7369	SMITH	CLERK	10		

DEPT					
DEPTNO INTEGER PRIMARY KEY	DNAME VARCHAR(30)	LOC VARCHAR(100)			
10	APPSERVER	NEW YORK			

R2RML: Example Desired RDF Output

Example output data

<http://data.example.com/employee/7369> rdf:type ex:Employee. <http://data.example.com/employee/7369> ex:name "SMITH". <http://data.example.com/employee/7369> ex:department <http://data.example.com/department/10>.

<http://data.example.com/department/10> rdf:type ex:Department. <http://data.example.com/department/10> ex:name "APPSERVER". <http://data.example.com/department/10> ex:location "NEW YORK". <http://data.example.com/department/10> ex:staff 1.

R2RML: Mapping a Simple Table

Example R2RML mapping

```
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix ex: <http://example.com/ns#>.
```

```
<#TriplesMap1>
    rr:logicalTable [ rr:tableName "EMP" ];
    rr:subjectMap [
        rr:template "http://data.example.com/employee/{EMPNO}";
        rr:class ex:Employee;
    ];
    rr:predicateObjectMap [
        rr:predicate ex:name;
        rr:objectMap [ rr:column "ENAME" ];
    ].
```

Compi

EMP

VARCHAR(20)

DEPTNO

10

INTEGER REFERENCES DEPT (DEPTN)

JOB

CLERK

LOC

ENAME

SMITH

DEPT

DNAME

VARCHAR(100)

EMPNO

DEPTNO

7369

INTEGER PRIMARY KEY

R2RML: Mapping a Simple Table - Output

R2RML: Computing a Property with an R2RML View

```
Example SQL query
<#DeptTableView> rr:sqlQuery """
SELECT DEPTNO,
    DNAME,
    LOC,
    (SELECT COUNT(*) FROM EMP WHERE EMP.DEPTNO=DEPT.DEPTNO) AS STAFF
FROM DEPT;
""".
```


R2RML: Computing a Property with an R2RML View

Example R2RML mapping

```
<#TriplesMap2>
    rr:logicalTable <#DeptTableView>;
    rr:subjectMap [
        rr:template "http://data.example.com/department/{DEPTNO}";
        rr:class ex:Department;
    1;
    rr:predicateObjectMap [
        rr:predicate ex:name;
        rr:objectMap [ rr:column "DNAME" ];
    ];
    rr:predicateObjectMap [
        rr:predicate ex:location;
        rr:objectMap [ rr:column "LOC" ];
    ];
    rr:predicateObjectMap [
        rr:predicate ex:staff;
        rr:objectMap [ rr:column "STAFF" ];
    ].
```

Fariz Darari

R2RML: Computing a Property with an R2RML View - Data

EMP						
EMPNO INTEGER PRIMARY KEY	ENAME VARCHAR(100)	JOB VARCHAR(20)	DEPTNO INTEGER REFERENCES DEPT (DEPTNO)			
7369	SMITH	CLERK	10			
	DEPT					
DEPTNO INTEGER PRIMARY KEY	DEPT DNAME VARCHAR(30)	LOC VARCHAR(100)				
DEPTNO INTEGER PRIMARY KEY 10	DEPT DNAME VARCHAR(30) APPSERVER	LOC VARCHAR(100) NEW YORK				

Example output data

<http://data.example.com/department/10> rdf:type ex:Department. <http://data.example.com/department/10> ex:name "APPSERVER". <http://data.example.com/department/10> ex:location "NEW YORK". <http://data.example.com/department/10> ex:staff 1.

R2RML: Linking Two Tables

Example R2RML mapping

```
<#TriplesMap1>
    rr:predicateObjectMap [
        rr:predicate ex:department;
        rr:objectMap [
            rr:parentTriplesMap <#TriplesMap2>;
            rr:joinCondition [
                rr:child "DEPTNO";
                rr:parent "DEPTNO";
            ];
        ];
    ].
```

Fariz Darari

R2RML: Linking Two Tables - Data

Example output data

<http://data.example.com/employee/7369> ex:department <http://data.example.com/department/10>.

RML

Compiled by Fariz Darari

- RML: RDF Mapping Language
- A generic mapping language based on and extending R2RML
- Express customized mapping rules from heterogeneous data structures and serializations to the RDF data model
- RML specification is available: https://rml.io/specs/rml/

Compiled by Fariz Darari

RML: Features

- Generate knowledge graphs
- Create declarative rules
- Use any type of semistructured data
- Guarantee high-quality KGs

Credits:

https://www.w3.org/TR/r2rml/ https://www.w3.org/TR/rdb-direct-mapping/ https://research.cs.wisc.edu/dibook/

https://rml.io/specs/rml/

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 by Faculty of Computer Science UI

200000

CSCE604131 | Jejaring Semantik (Knowledge Graphs) KG Infrastructure

Fariz Darari, Ph.D.

KG Stack from 2000-2005

2000

Source: W3C history

Most Recent KG Stack (2017)

UNIVERSITAS Indonesia

KG Workflow

Original image by Fariz Darari

UNIVERSITAS Indonesia

COMPUTER SCIENCE

Apache Jena Library

- Apache Jena (or Jena in short) is a free and open source Java framework for building semantic web and Linked Data applications.
- The framework is composed of different APIs interacting together to process RDF data:
 - > RDF API
 - > ARQ (SPARQL)
 - > TDB triple store
 - > Fuseki SPARQL server
 - > Ontology & inference API
- Link: https://jena.apache.org/

Apache Jena Fuseki

- Apache Jena Fuseki is a SPARQL server, part of offering from the Apache Jena library, though it can be used separately.
- As a SPARQL server, its main function is to act as the protocol engine for SPARQL querying, update, and graph store.
- That is, Fuseki acts as a SPARQL endpoint to whatever RDF data behind it.
- It can run with RDF data stored in memory or together with a persistent RDF store.
- For the latter, Jena Fuseki can work well together with Jena TDB storage.

Apache Jena Fuseki

€ query 2 upload files	🕼 edit 🛛 👩 info			
SPARQL query				
o try out some SPAROL queri	es analisst the selected dataset, ente	r vour que	erv here	
o sy our some or Artaic quen	es against the selected dataset, ente	r your que	sty nere.	
EXAMPLE QUERIES				
	a of classor			
Selection of triples Selection	1414-00050			
Selection of triples Selection	141440593			
Selection of triples Selection	141,440,005			
Selection of triples Selection PREFIXES rdf rdfs owl xsd	0			
Selection of triples Selection PREFIXES rdt rdfs owl xsd	0			
Selection of triples Selection PREFIXES rdf rdfs owl xsd SPARQL ENCPOINT	CONTENT TYPE (SELECT)		CONTENT TYPE (GRAF	240
Selection of triples Selection PREFIXES rdf rdfs own xsd SPARQL ENOPOINT /budaya/sparql	CONTENT TYPE (SELECT) JSON	•	CONTENT TYPE (GRAF	24)
Selection of triples Selection PREFIXES rdf rdfs owl xsd SPARQL ENCPOINT /budaya/sparql	CONTENT TYPE (SELECT) JSON		CONTENT TYPE (GRAF Turtle	PH)
Selection of triples Selection PREFIXES rdf rdfs own xsd SPARQL ENOPOINT /budaya/sparql	CONTENT TYPE (SELECT) JSON	•	CONTENT TYPE (GRAF	PH)
Selection of triples Selection PREFIXES rdf rdfs owl xsd SPARQL ENCPOINT /budaya/sparql 1 - prefix bkbr: <htt< td=""><td>CONTENT TYPE (SELECT) JSON ps://budayakb.cs.ui.ac.id/reso</td><td>• ource/></td><td>CONTENT TYPE (GRAF Turtle</td><td>H)</td></htt<>	CONTENT TYPE (SELECT) JSON ps://budayakb.cs.ui.ac.id/reso	• ource/>	CONTENT TYPE (GRAF Turtle	H)
Selection of triples Selection PREFIXES rdf rdfs owl xsd SEAROL ENOPOINT /budaya/sparqf 1 - prefix bkbr: <htt 2 prefix bkbr: <htt< td=""><td>CONTENT TYPE (SELECT) JSON ps://budayakb.cs.ui.ac.id/reso ps://budayakb.cs.ui.ac.id/ns#</td><td>• ource/></td><td>CONTENT TYPE (GRAF</td><td>- 53</td></htt<></htt 	CONTENT TYPE (SELECT) JSON ps://budayakb.cs.ui.ac.id/reso ps://budayakb.cs.ui.ac.id/ns#	• ource/>	CONTENT TYPE (GRAF	- 53
Selection of triples Selection PREFIXES rdf rdfs owl xsd SEAWAQL ENCPOINT /budaya/sparql 1 - prefix bkbr: <htt 2 prefix bkbr: <htt 3</htt </htt 	CONTENT TYPE (SELECT) JSON ps://budayakb.cs.ui.ac.id/reso ps://budayakb.cs.ui.ac.id/ns#	• ource/>	CONTENT TYPE (GRAF	*•
Selection of triples Selection PREFIXES rdf rdfs owl xsd SRAROL ENCPOINT /budaya/sparql 1 - prefix bkbr; <htt 2 prefix bkbr; <htt 3 4 SELECT ?province ?</htt </htt 	CONTENT TYPE (SELECT) JSON ps://budayakb.cs.ui.ac.id/reso ps://budayakb.cs.ui.ac.id/ns#	• ource/>	CONTENT TYPE (GRAF	- 53

oy Fariz Darari

UNICENSITAS DOTORIO TORIGONI MONTO VORTO: TORIGONI MONTO COMPUTER SCIENCE

Apache Jena TDB

- Apache Jena TDB is the RDF storage and query component of the Apache Jena library.
- As such, it supports the whole range of Jena APIs.
- Typically, one uses Jena TDB programmatically through Jena library.
- Jena TDB is tied to a single JVM, that is, it cannot be directly accessed by more than one JVM at a time.
- To enable sharing across multiple applications, it must be used in conjunction with Fuseki.

Eclipse RDF4J **Irdf4j**

- Eclipse RDF4J is a Java framework for processing and handling RDF data.
- This includes creating, parsing, scalable storage, reasoning and querying with RDF and Linked Data.
- It offers an easy-to-use API that can be connected to all leading RDF database solutions.
- It allows you to connect with SPARQL endpoints and create applications that leverage the power of linked data and Semantic Web.
- Link: https://rdf4j.org/

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 by Faculty of Computer Science UI

CSCE604131 | Jejaring Semantik (Knowledge Graphs)

500/

COMPUTER

SCIENCE

UNIVERSITAS Indonesia

Kampus Merdeka

INDONESIA JAY

0

Fariz Darari, Ph.D.

Table: COVID-19 Victims

	dateOfDeath	name 🍦	citizenship 🔶	profession \$\$
	July 28, 2021	Porfirio Armando Betancourt	Honduras	association football player
	July 26, 2021	René Juárez Cisneros	Mexico	economist
	July 26, 2021	Natty Hollmann	Argentina	model
	July 25, 2021	Hasip Kalimuddin Syam	Indonesia	politician
	July 25, 2021	Roberto Valcárcel	Bolivia	painter
	July 23, 2021	Mahmoud Khedri	Algeria	politician
	July 23, 2021	Rodolfo Peña Flores	Costa Rica	administrator
	July 23, 2021	Jimmy Demianus Ijie	Indonesia	politician
	July 22, 2021	Ian Palmer	South Africa	association football player
	July 20, 2021	Theo Jubitana	Suriname	village head
Wikid	lata Query Service	U. POL	÷ · ·	and the second second

Image Grid: COVID-19 Vaccines

)arar

Compiled by Fariz Darari

<u>Link</u>

Map: COVID-19 Outbreaks

Map: COVID-19 Outbreaks

166

Bubble Plot: COVID-19 Cases

Line Charts: COVID-19 Growths UNIVERSIT INDONES OMPUTER CIENCE 240n 220n 200n 180n label: Recoveries time: 07-03-2021 count: 169m 160n 140n count 120n 100 80m 60m 40m 20n -----0-¢ 04-01-2020 05-01-2020 06-01-2020 07-01-2020 08-01-2020 09-01-2020 10-01-2020 12-01-2020 01-01-2021 02-01-2021 02-01-2021 04-01-2021 05-01-2021 06-01-2021 07-01-2021 08-01-2021 09-01-2021 10-01-2021 10-01-2021 time Cases Deaths Recoveries

Link: https://w.wiki/gN7

Graph: COVID-19 Symptoms

Link

iled by Fariz Darari

Compiled by Fariz Darari

169

Tree: COVID-19 Taxonomy

iled by Fariz Darari

SARS-CoV-2

- ▲ IIII SARSr-CoV
 - Sarbecovirus
 - Betacoronavirus
 - ▲ IIII Orthocoronavirinae
 - ▲ IIII Coronaviridae
 - ▲ IIII Nidovirales
 - ▲ IIII Pisoniviricetes
 - ▲ IIII Pisuviricota
 - III Orthornavirae
 - III Riboviria

Compiled by Fariz Darari

<u>Link</u>

VizKG Library: https://pypi.org/project/VizKG/ Q Search projects Register Help Sponsors Log in VizKG 1.0.6 ~ Latest version pip install VizKG 🗳 Released: Aug 3, 2021 Visualization library for SPARQL query results Navigation **Project description E** Project description VizKG 3 Release history Open in Colab python 3 pypi v1.0.6 license MIT ▲ Download files VizKG, a visualization library for SPARQL query results over KGs. VizKG links SPARQL query results and external visualization libraries by mapping query variables to the visualization components needed, currently allowing for 24 types of visualizations. Not only that, VizKG also provides visualization recommendations for arbitrary SPARQL query **Project links** result.

VizKG Library: https://pypi.org/project/VizKG/

🕑 Demo	Installation	
Source Code		
	Use the package manager <u>pip</u> to install VizKG.	
Statistics		
GitHub statistics:	pip install VizKG	
🚖 Stars: 4		
P Forks: 1	Usage	
• Open issues/PRs: 0		
View statistics for this project via	# Import the library	
Libraries.io 🗹, or by using <u>our public</u> dataset on Google BigQuery 🗹	<pre>import VizKG.visualize as vkg</pre>	

VizKG Library: https://pypi.org/project/VizKG/

Supported Visualizations

- Table
- ImageGrid
- Map
- Tree
- Timeline
- Dimensions
- Graph
- WordCloud
- Tree Map
- SunBurst Chart
- Line Chart
- Bar Chart
- Area Chart

Compiled by Fariz Darari

- StackedArea Chart
- Histogram
- Density Plot
- Box Plot
- Violin Plot
- Bubble Chart
- Scatter Chart
- HeatMap
- Radar Chart

Fariz Darari

VizKG Library: https://pypi.org/project/VizKG/

VizKG: A Framework for Visualizing SPARQL Query Results over Knowledge Graphs

Hana Raissya¹, Fariz Darari (⊠)^{1,2}, and Fajar J. Ekaputra³

¹ Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia
 ² Tokopedia-UI AI Center of Excellence, Jakarta, Indonesia
 {hana.raissya, fariz}@ui.ac.id
 ³ Institute of Information Systems Engineering, TU Wien, Vienna, Austria
 fajar.ekaputra@tuwien.ac.at

Abstract. Despite the rise of the knowledge graph (KG) popularity, understanding SPARQL query results from a KG can be challenging for users. The use of data visualization tools, e.g., Wikidata Query Service and YASGUI, can help address this challenge. However, existing tools are either focused just on a specific KG or only provided as a web interface. This paper proposes VizKG, a framework that provides a wide range of visualizations for SPARQL query results over KGs. VizKG aims to assist users in extracting patterns and insights from data in KGs, and hence supporting further KG analysis. VizKG features a wrapper that links SPARQL query results and external visualization libraries by mapping query result variables to the required visualization components, currently allowing for 24 types of visualizations. Not only that, VizKG also includes visualization recommendations for arbitrary SPARQL query results as well as extension mechanisms for additional visualization types. In our evaluation, the visualization recommendation feature of VizKG achieves an accuracy of 87.8%. To demonstrate the usefulness of VizKG in practical settings, this paper also reports on use case evaluation over various domains and KGs. A Python-based, Jupyter Notebook friendly implementation of VizKG is openly available at https://pypi.org/project/VizKG/.

VOILA 2021 Topics Submission Committees

Computer Science

12:05 - 13:25 Session I: Linked data - SPARQL

12:00 - 12:05 Opening and Introduction

12:05 - 12:20 A Survey on User Interaction with Linked Data *by Mariana Aguiar, Sérgio Nunes and Bruno Giesteira*

12:20 - 12:35 Fast Approximate Autocompletion for SPARQL Query Builders *by Gabriel de la Parra and Aidan Hogan*

12:35 - 12:50 Displaying triple provenance with extensions of Fresnel by Lloyd Rutledge, Pascal Mellema, Tije Pietersma and Stef Joosten

12:50 - 13:05 Visual Presentation of SPARQL Queries in ViziQuer by Kārlis Čerāns, Julija Ovcinnikova, Mikus Grasmanis, Lelde Lace and Aiga Romane

13:05 - 13:15 VizKG: A Framework for Visualizing SPARQL Query Results over Knowledge Graphs *by Hana Raissya, Fariz Darari and Fajar J. Ekaputra*

13:15 - 13:25 Discussion

http://voila2021.visualdataweb.org/

Keywords: Visualization · Knowledge Graphs · SPARQL · Insights

VizKG Map: Temple (= candi) location in Indonesia

UNVERSITAS INDONESIT Toria: Oriedia: Statistic Incourts of COMPUTER SCIENCE

z Darari

TreeMap: Number of University Employees by Job Title

ariz Darari

Compiled by Fariz Darari

<u>Link</u>

TreeMap: Number of University Employees by Job Title

OU_UK: Number of Employees by Job Title

```
sparql query = """
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX schema: <http://schema.org/jobTitle>
SELECT DISTINCT ?jobTitle (COUNT(?jobTitle) as ?count) WHERE {?s a foaf:Person .
  ?s <http://schema.org/jobTitle> ?jobTitle .
  FILTER (lang(?jobTitle) != 'en')
GROUP BY ?jobTitle
HAVING (?count > 10)
.....
#to query another endpoint, change the URL for the service and the query
spargl_service_url = "https://data.open.ac.uk/spargl"
chart = vkg(sparql_query=sparql_query, sparql_service_url=sparql_service_url, chart='TreeMap')
chart.plot()
```

177

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 by Faculty of Computer Science UI

FACULTY OF COMPUTER SCIENCE

UNIVERSITAS Indonesia

CSCE604131 | Jejaring Semantik (Knowledge Graphs) KG Quality

Fariz Darari, Ph.D.

Data quality is data that is fit for use by data consumers

https://www.datapine.com/blog/data-quality-management-and-metrics/

UNIVERSITA Indonesi/

Computer Science

KG Quality Dimensions (Zaveri et al., 2016)

- Accessibility dimensions
- Intrinsic dimensions
- Contextual dimensions
- Representational dimensions

Compiled by Fariz Darari

Accessibility Dimension

Availability

The extent to which data (or some portion of it) is present, obtainable, and ready for use

Licensing

Clarity of license and usage/sharing policy

Interlinking

Degree of interconnectedness of data from one source to another

Security

The extent to which data is protected against alteration and misuse

Performance

Efficiency of large-scale KG systems

Intrinsic Dimension

Syntactic Validity

Degree to which an RDF document conforms to the specification of the serialization format

Semantic Accuracy

Degree to which data values correctly represent the real world facts

Consistency

Free of (logical/formal) contradictions with respect to particular knowledge representation and inference mechanisms

Conciseness

Minimization of redundancy of entities at the schema and the data level

Completeness

Degree to which all required information is present in a particular dataset

Contextual Dimension

• Relevancy

Compiled by Fariz Darari

Provision of information which is in accordance with the task at hand and important to the user query

Trustworthiness

Degree to which the information is accepted to be correct, true, real and credible

• Understandability

The ease with which data can be comprehended without ambiguity and be used by a human information consumer

Timeliness

How up-to-date data is relative to a specific task

Representational Dimension

Representational-Conciseness Compiled by Fariz Darari

The representation of the data, which is compact and well formatted

• Interoperability

Degree to which the format and structure of the information conforms to previously returned information as well as data from other sources

Interpretability

Technical aspects of the data, that is, whether information is represented using an appropriate notation and whether the machine is able to process the data

Versatility

Availability of the data in different representations and in an internationalized way

KG Quality Interrelations

Credits:

http://mitiq.mit.edu/Documents/Publications/TDQMpub/14_Beyond_Accuracy.pdf https://www.datapine.com/blog/data-quality-management-and-metrics/ http://www.semantic-web-journal.net/system/files/swj773.pdf

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 by Faculty of Computer Science UI

CSCE604131 | Jejaring Semantik (Knowledge Graphs) KG Embeddings

Fariz Darari, Ph.D.

Motivation: Link/Edge Prediction

Motivation: KG Recommender System

ed by Fariz Darari

Compiled by Fariz

KG Embeddings: Idea

KG Embeddings: node2vec

KG Embeddings: node2vec for Item Recommendation

Source: https://2018.eswc-conferences.org/files/posters-demos/paper_265.pdf

KG Embeddings: rdf2vec

- RDF2vec is a tool for creating vector representations of RDF graphs.
- In essence, RDF2vec creates a numeric vector for each node in an RDF graph.
- RDF2vec was inspired by the word2vec approach.
- Random walks on the RDF graph are used to create sequences of RDF nodes, which are then used as input for the word2vec algorithm.
- Application scenarios: KGs as background knowledge in data mining tasks, or content-based recommender systems.
- Link: http://rdf2vec.org/

From this graph, a set of random walks that could be extracted may look as follows:

```
Hamburg -> country -> Germany -> leader -> Angela_Merkel
Germany -> leader -> Angela_Merkel -> birthPlace -> Hamburg
Hamburg -> leader -> Peter_Tschentscher -> residence -> Hamburg
```


country
 city

Fariz Darari

Compiled

KG Embeddings: TransE

Compiled by Fariz Darari

200

KG Embeddings: TransE for Recommending Movies

KG Embeddings Library: AmpliGraph

• AmpliGraph is a suite of neural machine learning models for relational learning, a branch of machine learning that deals with supervised learning on KGs.

- Use AmpliGraph if you need to:
 - Discover new knowledge from an existing knowledge graph.
 - Complete large knowledge graphs with missing statements.
 - Generate stand-alone knowledge graph embeddings.
 - Develop and evaluate a new relational model.
- Link: https://docs.ampligraph.org

KG Embeddings Library: AmpliGraph Features

- Intuitive APIs: AmpliGraph APIs are designed to reduce the code amount required to learn models that predict links in knowledge graphs.
- GPU-Ready: AmpliGraph is based on TensorFlow, and it is designed to run seamlessly on CPU and GPU devices to speed-up training.
- Extensible: Roll your own knowledge graph embeddings model by extending AmpliGraph base estimators.

KG Embeddings Library: AmpliGraph Modules

- Datasets: helper functions to load datasets (KGs).
- Models: knowledge graph embedding models. AmpliGraph contains TransE, DistMult, ComplEx, HolE, ConvE, ConvKB (More to come!)
- Evaluation: metrics and evaluation protocols to assess the predictive power of the models.
- Discovery: High-level convenience APIs for knowledge discovery (discover new facts, cluster entities, predict near duplicates).

KG Embeddings Library: AmpliGraph Application

Compiled by Fariz Darari

205

KG Embeddings Library: AmpliGraph Application

Compiled by Fariz Darari

UNIVERSITA Indonesia

Computer Science

Credits:

https://towardsdatascience.com/embedding-models-for-knowledge-graph-completion-a66d4c01d588 https://link.springer.com/chapter/10.1007/978-3-030-12375-8_4

https://www.slideshare.net/EnricoPalumbo2/an-empirical-comparison-of-knowledge-graph-embeddings-for-item-recommendation https://towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 by Faculty of Computer Science UI

CSCE604131 | Jejaring Semantik (Knowledge Graphs) KG Construction

Fariz Darari, Ph.D.

Named Entity Recognition

Back in 2000, People Magazine PUBLISHER the time was a little more fashion-conscious, e

ľ	Now-a-days the prince mainly wears						navy 🖪	
	double-breasted	DESIGN),	liş	light blue			
	pointed DESIGN	collars PART			, ai	nd	burg	

But who knows what the future holds ...

https://paperswithcode.com/task/named-entity-recognition-ner

- Named entity recognition (NER) is the task of tagging entities in text with their corresponding type.
- Approaches typically use BIO notation, which differentiates the beginning (B) and the inside (I) of entities. O is used for non-entity tokens.

UNDERSTAN VINCENSESS Vote: Credital Autor VACULTY OF COMPUTER SCIENCE

(Named) Entity Linking

- Entity Linking (EL) is the task of recognizing (cf. Named Entity Recognition) and disambiguating (Named Entity Disambiguation) named entities to a knowledge graph (e.g., Wikidata, DBpedia, or YAGO).
- EL can be split into two classes of approaches:

- End-to-End: processing a piece of text to extract the entities (i.e., Named Entity Recognition) and then disambiguate these extracted entities to the correct entry in a given KG (e.g., Wikidata, DBpedia, YAGO).

- Disambiguation-Only: contrary to the first approach, this one directly takes gold standard named entities as input and only disambiguates them to the correct entry in a given KG.

Credits: http://nlpprogress.com/english/entity_linking.html

OpenTapioca annotates text with locations, organizations and people from <u>Wikidata</u>. It is synchronous with Wikidata.

This is a prototype. See the <u>GitHub project</u> for more info.

Associated Press writer Julie Pace contributed from Washington.

UNIVERSITA Indonesi/

COMPUTER

Science

Washington, D.C. (Q61) capital city of the United States Rank: 14.18, phrase: 9.86 Statements: 234, sitelinks: 266 Score: 0.27103144743233265

//

Relation Extraction

- Relation Extraction is the task of predicting attributes and relations for entities in a sentence.
- For example, given a sentence: "Barack Obama was born in Honolulu, Hawaii" A relation classifier aims at predicting the relation of "bornInCity".
- Relation Extraction is the key component for building relation knowledge graphs, and it is of crucial significance to NLP applications such as structured search, sentiment analysis, question answering, and summarization.

Compiled by Fariz Darari

Credits: https://paperswithcode.com/task/relation-extraction/codeless

UNIVERSITA UNIVERSITA Vota: Pada Vota: Pada COMPUTE SCIENCE

Open Information Extraction

- Open information extraction (open IE) refers to the extraction of relation tuples, typically binary relations, from plain text, such as (Mark Zuckerberg; founded; Facebook).
- The central difference from other information extraction is that the schema for these relations does not need to be specified in advance; typically the relation name is just the text linking two arguments.
- For example, "Barack Obama was born in Hawaii" would create a triple (Barack Obama; was born in; Hawaii), corresponding to the open domain relation: was-born-in(Barack-Obama, Hawaii).

Credits: https://nlp.stanford.edu/software/openie.html

Open Information Extraction

Born in a town, she took the midnight train

she took midnight train

. . .

(she; took; midnight train)

prep_in det nsubi amod she Born in a small town (extracted clause) she Born in small town she Born in a town she Born in town (she; born in; small town) (she; born in; town)

Computer Science

NELL: Never Ending Language Learning

Can computers learn to read? Since January 2010, a computer system called NELL (Never-Ending Language Learner) has been running continuously, attempting to perform two tasks each day:
 1) First, it attempts to "read," or extract facts from text found in hundreds of

a) First, it attempts to read, or extract facts from text found in numbreds of millions of web pages (e.g., playsInstrument(George_Harrison, guitar)).
2) Second, it attempts to improve its reading competence, so that tomorrow it can extract more facts from the web, more accurately.

 So far, NELL has accumulated over 50 million candidate beliefs by reading the web, and it is considering these at different levels of confidence. NELL has high confidence in 2,810,379 of these beliefs — these are displayed at http://rtw.ml.cmu.edu/rtw/

Compiled by Fariz Darari

Computer Science

OD2WD: From Open Data to Wikidata

	A	B	C	D	E
1	Nama Sekolah	Alamat	Wilayah	Telepon	Jenis Sekolah
2	SMPN 3	JL. MANGGARAI UTARA IV/6 MANGGARAI	Jakarta Selatan	021 8303844	SMP
3	SMPN 11	JLN.KERINCI BLOK.E KEB.BARU JAK-SEL	Jakarta Selatan	021 7221665	SMP
4	SMPN 12	JLN.WIJAYA IX NO.50 KEB.BARU JAK-SEL	Jakarta Selatan	021 7208095	SMP
5	SMPN 13	JL.TIRTAYASA RAYA	Jakarta Selatan	021 7262939	SMP
6	SMPN 15	JL. PROF. DR. SOEPOMO, SH MENTENG DALAM	Jakarta Selatan	021 8312669	SMP
7	SMPN 16	JL.PALMERAH BARAT NO.59	Jakarta Selatan	021 5483415	SMP
8	SMPN 19	JLN.BUMI BLOK.E NO.21 KEB.BARU JAK-SEL	Jakarta Selatan	021 7250219	SMP
9	SMPN 29	JLN.BUMI BLOK.E	Jakarta Selatan	021 7247493	SMP
10	SMPN 31	JL.PENINGGARAN BARAT III	Jakarta Selatan	021 7239730	SMP

Credits: http://ceur-ws.org/Vol-2459/paper1.pdf

Credits: https://dl.acm.org/doi/10.1145/3326467.3326487

Compiled by Fariz Darari

BudayaKB

217

UNIVERSITA Indonesia

Computer Science
BudayaKB

Fariz Darari Descriptor Category lexicon No. Tribes Percentage total Acehnese tribe tribe 3.160,728 70.65 Ethnic group Acehnese tribe ethnic Javanese ethnic 2 399,976 8.94 100 C /.+\stribe\$/i Gavo Tribe 3 322.996 7.22 분 Label Category Ethnic group Acehnese tribe

Compiled by Fariz Darari

218

Compiled by Fariz Darari

BudayaKB

Lex2KG: From legal documents to knowledge graph - Background

- Laws are typically available in the PDF format.
- The advancement of digital and AI technologies calls for machine-readable laws in order to support complex, automated legal processing (= Legal 4.0).
- Knowledge graph provides structured descriptions about entities of interest and relationships among them.
- The European Legislation Identifier (ELI) is an initiative to achieve a common representation of legislation metadata across European Union (EU) countries, inspiring the development of the legal extension of Google's Schema.org.
- Link to download Lex2KG preprint: <u>click here</u>

Lex2KG: From legal documents to knowledge graph

- A framework for automated conversion of legal documents to a legal KG.
- Aims to extract the metadata, structure, and textual content of legal documents, particularly laws, as well as relationships among legal resources, and present the extracted information as a (legal) KG.

Lex2KG: Architecture

Compiled by Fariz Darari

Compiled by Fariz Darari

Lex2KG: Schema

- Used as blueprint for KG construction
- Modeled using RDF Schema (RDFS), a W3C standard
- Facilitating the listing of the terms used in the legal KGs:
 - 15 classes (e.g., Legislation, Article)
 - 28 properties (e.g., partOf, cites, legislationType)
 - 6 (constant) individuals (e.g., Law as a value of legislationType).
- Aligned to Schema.org to support interoperability

Compiled by Fariz Darari

Legal KG contains the data of 784 Indonesian laws with a total size of 1,163,051 RDF triples successfully constructed from legal PDFs.

Information Type	#Triples
Metadata	6,869
Structure	$714,\!888$
Text	$152,\!301$
Citations in the same law	$22,\!829$
Citations between laws	$1,\!401$
Citations to non-existing resources	$7,\!095$
Amendments	$1,\!252$
Class assignments	$256,\!416$

Compiled by Fariz Darari

Lex2KG: Use Case Evaluation

* For readability purposes, "\/" in URIs is written as simply "/". Also, data written in Indonesian is translated to English.

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 by Faculty of Computer Science UI

KNOWLEDGE GRAPHS

MINI HANDBOOK

COMPILED BY FARIZ DARARI, PH.D.

FACULTY OF COMPUTER SCIENCE UNIVERSITAS INDONESIA